
www.blacksnwhite.com

NAME

ROLL
NUMBER

PROGRAM MASTER OF COMPUTER APPLICATIONS (MCA)

SEMESTER 2nd

COURSE
CODE

DCA6204

COURSE NAME ADVANCED DATA STRUCTURES

www.blacksnwhite.com

Q.1.a) Explain different types of data structures in detail

Answer:- Data structures are fundamental building blocks for organizing data in

computer programs. Choosing the right one for your needs is crucial for efficient

storage and retrieval.

Linear Data Structures:

 Arrays: Imagine a fixed-size container with labeled slots. Each slot stores data of the

same type, and you access elements using their index (like a slot number). Arrays offer

fast random access (retrieving any element by its index) but can be slow for insertions

or deletions in the middle, as other elements might need to be shifted.

 Linked Lists: Think of train cars linked together. Each car (node) holds data and a

pointer to the next car. Linked lists are flexible in size and allow for easier

insertions/deletions at any point, but random access is slower as you need to traverse

the list car by car to find a specific element.

 Stacks: LIFO (Last-In-First-Out) principle, like a stack of plates. You can only

add/remove elements from the top. Stacks are great for keeping track of function calls,

implementing undo/redo functionality, or evaluating expressions.

 Queues: FIFO (First-In-First-Out) principle, like a waiting line. You add elements to

the back and remove them from the front. Queues are useful for processing tasks in a

specific order, managing buffers, or simulating real-world queues.

Non-Linear Data Structures:

 Trees: Hierarchical structures with a root node, child nodes, and so on. Data is

organized like a family tree. Trees enable efficient searching (especially binary search

trees) and are used for sorting algorithms, representing file systems, or implementing

decision trees in machine learning.

 Graphs: A collection of nodes (vertices) connected by edges. Useful for representing

networks (social media, transportation), modeling relationships, or pathfinding

algorithms.

 SET - I

www.blacksnwhite.com

Q.1.b) What do you understand by complexity of algorithm?

Answer:- Algorithm complexity refers to how efficiently an algorithm utilizes

resources like time and space to solve a problem. It's like measuring how much

work an algorithm needs to do as the size of the input data increases.

There are two main ways to analyze complexity:

 Time Complexity: This focuses on how long it takes the algorithm to run, typically

measured in terms of basic operations executed. Imagine a simple algorithm that adds

a list of numbers. As the list gets bigger (more input data), the number of addition

operations increases. Time complexity is often expressed using Big O notation (O(n)),

which represents the growth rate of operations based on the input size (n). Common

complexities include:

o Constant (O(1)): Operations don't depend on input size (e.g., accessing a

specific array element).

o Linear (O(n)): Operations grow proportionally to input size (e.g., iterating

through a list).

o Quadratic (O(n^2)): Operations grow quadratically with input size (e.g.,

nested loops comparing all pairs of elements).

o Exponential (O(2^n)): Operations grow very rapidly with input size (usually

undesirable due to slowness for large inputs).

 Space Complexity: This analyzes how much memory the algorithm uses during

execution. It considers both the space for the input data itself and any additional data

structures the algorithm creates. Ideally, space complexity should also grow modestly

with the input size.

Q.2) What is linked list? Explain different types of linked list.

Answer :-

Linked List: A Dynamic Data Structure

Instead, each node contains data and a reference (or pointer) to the next node in the sequence,

forming a chain-like structure. This allows for dynamic memory allocation, meaning the size

of the list can grow or shrink as needed during program execution.

www.blacksnwhite.com

Structure of a Node

A typical node in a linked list has two parts:

 Data: This field stores the actual value or information associated with the node. The

data type can vary depending on the application's needs (integers, strings, objects, etc.).

 Next Pointer: This field holds the memory address (reference) of the next node in the

list. A special value, often null or NULL, indicates the end of the list.

Types of Linked Lists

1. Singly Linked List:

o The most basic type of linked list.

o Each node contains data and a pointer to the next node.

o Traversal can only be done in one direction, starting from the head (the first

node) and following the next pointers until reaching the null terminator.

2. Doubly Linked List:

o Each node contains data, a pointer to the next node, and a pointer to the

previous node.

o Allows for traversal in both directions (forward and backward).

o Useful when needing to insert or delete nodes frequently, as you can navigate

the list from either end.

3. Circular Linked List:

o A variation of the singly linked list.

o The last node's next pointer points back to the head node, creating a circular

chain.

o Useful for applications where a continuous flow is needed, such as

implementing a round-robin scheduler.

Choosing the Right Linked List

The choice of linked list type depends on the specific requirements of your program:

 Singly Linked List: Suitable for basic linear data storage when insertion/deletion at

the beginning or end is frequent.

 Doubly Linked List: Preferred when two-way traversal is required, or when frequent

insertion/deletion needs to occur anywhere in the list.

 Circular Linked List: Ideal for simulating a circular structure or when the end of the

list needs to seamlessly connect back to the beginning.

Advantages of Linked Lists:

www.blacksnwhite.com

 Dynamic Memory Allocation: Nodes can be added or removed as needed, making

them efficient for data sets of variable size.

 Efficient Insertion/Deletion: Insertion and deletion of nodes can be done at any

position in the list with relative ease, especially compared to arrays.

Disadvantages of Linked Lists:

 No Random Access: Unlike arrays, you cannot directly access any element by its

index in constant time. You need to traverse the list from the beginning until you reach

the desired node.

 Memory Overhead: Each node stores an extra pointer reference, which can consume

additional memory compared to arrays, especially for simple data types.

Q.3.a) Discuss PUSH and POP operations of STACK in detail.

Answer:- PUSH and POP: The Lifeblood of Stacks

A stack, following the LIFO (Last In, First Out) principle, operates like a stack of plates. You

add plates (data) on top (push), and remove them from the top (pop). Two fundamental

operations govern this behavior: PUSH and POP.

PUSH

 Function: Adds a new element (data) to the top of the stack.

 Implementation:

1. Check if the stack is full (implementation-dependent). If full, handle overflow

condition (e.g., error message).

2. Create a new node to hold the data to be pushed.

3. Update the next pointer of the new node to point to the current top node (or null

if empty).

4. Update the stack's top pointer to point to the newly created node. This becomes

the new top of the stack.

POP

 Function: Removes and returns the element from the top of the stack.

 Implementation:

1. Check if the stack is empty (underflow condition). If empty, return an error or

special value.

www.blacksnwhite.com

2. Store the data from the top node (the one to be removed).

3. Update the stack's top pointer to point to the second node (the new top).

4. Decrement the stack size (if size is tracked).

5. Return the stored data (the element that was removed).

Key Points:

 PUSH and POP operations modify the top pointer of the stack, keeping track of the

current top element.

 PUSH adds an element, while POP removes and returns it.

 Both operations require checks for overflow (PUSH) and underflow (POP) conditions

to ensure proper stack behavior.

Applications of PUSH and POP:

 Function call handling (storing return addresses)

 Expression evaluation (postfix notation)

 Backtracking algorithms (undoing operations)

 Implementing undo/redo functionality in applications

Q.3.b) What is AVL tree? How it is different from BST?

Answer:- AVL Trees: Maintaining Balance in the BST World

An AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing type of

Binary Search Tree (BST). Both BSTs and AVL trees are used for efficient searching and

sorting, but AVL trees offer a guaranteed balance, ensuring faster operations.

Key Differences:

1. Balance Factor:

o BST: No concept of balance factor. A BST can become unbalanced (heavily

skewed to one side), leading to slower searches.

o AVL Tree: Every node has a balance factor, which is the difference in heights

between its left and right subtrees. AVL trees strictly maintain a balance factor

of -1, 0, or 1 for each node, ensuring a balanced structure.

2. Structure:

o BST: Simpler structure with only data and pointers to left and right child nodes.

o AVL Tree: Requires an additional field in each node to store the balance factor.

www.blacksnwhite.com

3. Operations:

o BST: Insertion and deletion are relatively straightforward, but performance

can degrade with unbalanced trees.

o AVL Tree: Insertion and deletion involve rotations to maintain balance.

These rotations add complexity but guarantee faster search and retrieval times.

Choosing Between BST and AVL Tree:

 BST: Simpler to implement, suitable for situations where occasional imbalances are

acceptable and search performance is not critical.

 AVL Tree: More complex but ensures faster search and retrieval due to its

guaranteed balance. Ideal for applications where frequent insertions, deletions, and

efficient searches are essential.

 BST prioritizes simplicity in structure and operations.

 AVL Tree prioritizes balance and guaranteed search performance at the cost of

slightly more complex rotations during insertions and deletions.

www.blacksnwhite.com

Q.4) Explain difference between linear and binary search with example.

Answer:- Linear Search vs. Binary Search: Finding Your Way Through Data

When searching for data in a list or array, you have two main options: linear search and binary

search. While both aim to locate a specific element, they differ in their approach and efficiency.

Here's a breakdown to help you choose the right tool for the job.

Linear Search: A Simple Walk-Through

Imagine searching for a book in a bookshelf that isn't organized. Linear search mimics this

process. It starts at the beginning of the list and compares each element with the target value

one by one, moving linearly until it either finds a match or reaches the end of the list.

Example:

Let's say you have a list of friends' names: ["Alice", "Bob", "Charlie", "David", "Emily"]. You

want to find "Charlie".

 Linear search starts with "Alice". It compares "Alice" with "Charlie" and finds no

match.

 It moves on to "Bob", again no match.

 This continues until it reaches "Charlie" and finds a match.

Pros of Linear Search:

 Simple to understand and implement: Linear search is straightforward and doesn't

require any complex logic or data organization.

 Works on any data: It can be used on unsorted or partially sorted lists, unlike binary

search.

Cons of Linear Search:

 Slow for large datasets: As the list size increases, the search time grows

proportionally. In the worst-case scenario (target element is at the end), it needs to

compare with every element.

 Inefficient for frequent searches: If you need to search for elements repeatedly in a

large list, linear search becomes cumbersome.

Binary Search: Divide and Conquer

Binary search, on the other hand, takes a more strategic approach. It works best with sorted

lists. Here's how it goes:

1. Start at the middle: It begins by identifying the middle element of the list.

 SET - II

www.blacksnwhite.com

2. Compare with the target: It compares the middle element with the target value

you're searching for.

o Match: If they are equal, you've found your element!

o Target is less: If the target value is less than the middle element, the search

continues in the left half of the remaining list.

o Target is greater: If the target value is greater than the middle element, the

search continues in the right half of the remaining list.

3. Repeat steps 1 and 2: This process of dividing the search space in half and focusing

on the relevant half continues until the target is found or the search space becomes

empty.

Example:

Consider the same list of friends' names, but now sorted alphabetically: ["Alice", "Bob",

"Charlie", "David", "Emily"]. You want to find "Charlie".

 Binary search starts with the middle element, which is "Charlie" in this case. Perfect,

you've found it in just one step!

Pros of Binary Search:

 Faster for large datasets: Binary search has a logarithmic time complexity (O(log

n)), meaning the search time grows much slower than the list size. This makes it

significantly faster for large sorted lists.

 Efficient for repeated searches: With sorted data, binary search is ideal for scenarios

where you need to find elements repeatedly.

Cons of Binary Search:

 Requires sorted data: Binary search relies on the list being sorted in ascending or

descending order. It won't work efficiently on unsorted data.

 Slightly more complex to implement: While the basic concept is understandable,

implementing binary search requires more complex logic compared to linear search.

www.blacksnwhite.com

Q.5) What is external sorting? Explain in detail.

Answer:- External Sorting: Taming Massive Datasets

When dealing with datasets that are too large to fit comfortably in your computer's main

memory (RAM), traditional sorting algorithms like quicksort or merge sort become

impractical. This is where external sorting comes into play.

What is External Sorting?

External sorting is a class of sorting algorithms designed to handle massive amounts of data

that reside on slower external storage devices like hard drives. These algorithms leverage a

combination of internal memory (RAM) and external storage to efficiently sort the data in a

step-by-step process.

Why External Sorting?

Imagine sorting a million phone numbers. In-memory sorting algorithms would struggle to

hold everything in RAM, leading to slow performance due to frequent data swapping between

RAM and the disk. External sorting breaks down the problem into manageable chunks, sorts

them efficiently using internal memory, and then merges the sorted chunks back together on

the disk.

How Does External Sorting Work?

There are two main approaches to external sorting:

1. External Merge Sort: This is a popular and efficient technique. Here's the general

process:

o Pass 1: Divide and Conquer: The data is split into smaller sub-lists that can

fit in RAM. Each sub-list is then sorted using a regular in-memory sorting

algorithm like quicksort or merge sort. These sorted sub-lists are called runs.

o Pass 2 (and Subsequent Passes): Merge Runs: The sorted runs are merged

pairwise or in small groups. This merging process happens in multiple passes.

In each pass, a set of runs are read from the disk, merged in sorted order using

internal memory, and written back to the disk as a new, larger sorted run. With

each pass, the number of runs reduces, and their size increases.

o Final Pass: This pass merges the remaining runs into a single, final sorted file.

2. Distribution Sort: This approach resembles quicksort but uses external storage. The

data elements are partitioned based on their keys (values used for sorting) into multiple

www.blacksnwhite.com

buckets on the disk. Then, each bucket is sorted independently using an in-memory

sorting algorithm. Finally, the sorted buckets are merged to form the final sorted output.

Benefits of External Sorting:

 Handles Large Datasets: Efficiently sorts data exceeding main memory capacity.

 Scalability: Can handle datasets that grow in size over time.

 Flexibility: Works with various data types and sorting algorithms.

Challenges of External Sorting:

 Increased Complexity: Requires more complex algorithms and logic compared to in-

memory sorting.

 Disk I/O Overhead: Frequent data transfers between RAM and disk can impact

performance if not optimized.

 Temporary Storage: May require additional storage space for temporary files during

the sorting process.

Choosing the Right External Sorting Algorithm:

The choice between external merge sort and distribution sort depends on factors like:

 Data Distribution: If the data has a predictable or skewed distribution, distribution

sort might be more efficient.

 Available Memory: If RAM is limited, external merge sort might be preferable due

to its lower in-memory requirements during the merge phase.

Q.6) Explain collision resolution methods in detail.

Answer:- Hash tables are a fundamental data structure that rely on a hash function to map

keys to bucket (or slot) locations in an array. However, collisions occur when multiple keys

map to the same bucket. To maintain efficient search, insertion, and deletion operations, we

need strategies to resolve these collisions.

1. Separate Chaining

 Concept: This method treats each bucket like the head of a linked list. When a

collision occurs (multiple keys map to the same bucket), the new key-value pair is

added as a new node at the end of the existing linked list associated with that bucket.

 Implementation:

o Each bucket in the hash table stores a pointer to the head of a linked list (or

null if empty).

www.blacksnwhite.com

o During insertion, if a collision occurs, a new node is created to hold the key-

value pair, and it's linked to the end of the existing linked list.

o Searching involves traversing the linked list for the desired key.

o Deletion requires finding the node within the linked list and removing it.

 Advantages:

o Simple to implement: Easy to understand and code.

o Flexible: Can handle any number of colliding elements.

o Good for non-uniform data distribution: Works well even if the hash

function doesn't distribute keys uniformly across buckets.

 Disadvantages:

o Performance overhead: Traversing linked lists during search and deletion

can be slower than direct array access.

o Memory usage: Requires additional memory for the linked list nodes.

2. Open Addressing

 Concept: This method attempts to find a new empty slot within the hash table itself

for the colliding key-value pair. It uses a probing function to systematically search for

an alternative slot.

 Types of Probing:

o Linear Probing: The simplest approach. It checks the next slot (wrapping

around if needed) until an empty slot is found.

o Quadratic Probing: Uses a quadratic function (e.g., i^2) to determine the

probe distance, aiming to spread out probes more evenly.

o Double Hashing: Employs a secondary hash function to calculate the probe

distance for each collision. This helps avoid clustering of elements.

 Implementation:

o During insertion, if a collision occurs, the probing function is used to find an

empty slot within the hash table.

o Searching involves using the same probing function to traverse the table until

the desired key is found or an empty slot is encountered (indicating the key is

not present).

 Advantages:

o Faster search and deletion: Direct array access can be quicker compared to

linked list traversal.

www.blacksnwhite.com

o Potentially less memory usage: No separate linked list structures are needed.

 Disadvantages:

o Clustering: If the hash function or probing function isn't well-designed,

collisions can cluster together, leading to slowdowns.

o Primary clustering: If a large number of keys map to the same initial bucket,

finding an empty slot can become time-consuming.

